Query Planning

Lev Dubinets

SQL Nested Loop Semantics

SELECT DISTINCT column1, column2, column3
FROM table1 AS t1, table2 AS t2, table3 AS t3
WHERE <conditions>

result = set()
for x in t1
foryint2
forzint3
if conditions(x,y,z)
result.add((column1, column2, column3))

return result

Semantics - not implementation

Suppliers and Parts Database

CREATE TABLE Supplier (

SID int primary key,
SName varchar(10) NOT NULL,
Status int NOT NULL,

City varchar(10) NOT NULL

CREATE TABLE Part (

PID int primary key,
PName varchar(10) NOT NULL,
Color int NOT NULL,
Weight real NOT NULL,

City varchar(10) NOT NULL

CREATE TABLE Shipment (

SID int NOT NULL FOREIGN KEY REFERENCES Supplier(SID),
PID int NOT NULL FOREIGN KEY REFERENCES Part(PID),
oty int NOT NULL,

PRIMARY KEY (SID, PID)

https://en.wikipedia.org/wiki/Suppliers_and_Parts_database

Query Planning Overview

1. Parse SQL into a relational algebra tree or logical plan

a. Check that all relations and columns are known
2. Apply logical optimizations to plan

a. Based on heuristics like “push selections down” or “pull projections up”
3. Convert logical plan to physical plan

a. Allows tuning and knowledge of execution environment
b. Where a majority of bad optimizations occur

1. Query Plan disinct
1

Convert SQL into a relational algebra project(sh1.pid)

SELECT DISTINCT sh1.pid join(sh1.pid = sh2.pid)
FROM Supplier s1, Supplier s2, Shipment sh1, Shipment sh2 J pa= P

WHERE s1.city = 'Seattle’
AND s1.pid = sh1.pid
AND s2.city = 'San Francisco'

AND s2.pid = s2.pid

lect(s1.city = ‘Seattle’ select(s2.city = ‘San Francisco’
AND sh1.pid = sh2.pid select(s1.city = Seattle’) (s2.city)

| |

join(s1.pid = sh1.pid) join(s2.pid = sh2.pid)

TN R

Supplier s1 Shipment sh1 Supplier s2 Shipment sh2

2. Optimize w/ Heuristics disinc
1

Push selections down project(sh1.pid)
SELECT DISTINCT sh1.pid join(sh1.pid = sh2.pid)

FROM Supplier s1, Supplier s2, Shipment sh1, Shipment sh2

WHERE s1.city = 'Seattle’
AND s1.pid = sh1.pid
AND s2.city = 'San Francisco'

AND s2.pid = s2.pid lect(s1.city = ‘Seattle’ select(s2.city = ‘San Francisco’
AND sh1.pid = sh2.pid select(s1.city = ‘Seattle’) (s2.city ‘)

join(s1.pid = sh1.pid) join(s2.pid = sh2.pid)

TN R

Supplier s1 Shipment sh1 Supplier s2 Shipment sh2

2. Optimize w/ Heuristics disinc

Push selections down project(sh1.pid)
SELECT DISTINCT sh1.pid join(sh1.pid = sh2.pid)

FROM Supplier s1, Supplier s2, Shipment sh1, Shipment sh2

WHERE s1.city = 'Seattle’
AND s1.pid = sh1.pid
AND s2.city = 'San Francisco'

AND s2.pid = s2.pid join(s1.pid = sh1.pid join(s2.pid = sh2.pid
AND sh1.pid = sh2.pid ’O'"()(sh.pid) JO'”()(sh2.pid)
select(s1.city = ‘Seattle’) select(s2.city = ‘Seattle’)

/ /

Supplier s1 Shipment sh1 Supplier s2 Shipment sh2

3. Physical Query Plan

Similar to logical plan but specifies exactly what types of scans and joins to use
(e.g. index scan on idx1, hash join on join1, nested loop join on join2)

Major challenges PLANNEDSTMT
e \Which type of join/scan to use? SORT
e \What order to join tables in?
TARGETENTRY NESTLOOP

\

SEQSCAN SEQSCAN OPEXPR
TARGETENTRY .
pg_class pg_namespace n.oid = crelnamespace
OPEXPR

retkind = ANY (r,p"::"char"[]) AND pg_get_userbyid(relowner) = ‘postgres':name

“Queries in PostgreSQL”
https://habr.com/en/company/postgrespro/blog/649499/

3. Physical Query Plan

Which type of join to use?

e e.g. based on disk access speeds, and number of rows we’ll need to join, we
should use a nested loop join at a certain node

What order to join tables in?

e Is the query faster if | join supplier on supply first, or supply on shipment first?

Query Planner Options

Postgres allow configuration options to set the cost model for disk/memory
speeds, as well as allow thresholds for when it should use a specific type of
join/scan.

Postgres also provides per-query “planner hints” as configuration parameters
e.g. “SET enable hashjoin = ‘off’; SELECT * from”

https://www.postgresql.org/docs/current/runtime-config-query.htmi

3. Physical Query Plan

The rest of this presentation is set in stage 3 - creating the physical query plan.

We assume that steps 1 and 2 (parsing SQL and logical optimizations) are
relatively straightforward and there is a deterministic “correct answer” that is easy

for the optimizer to compute every time.

Typical Query Optimizer

cardinality cost [X]Kw. B
SELECT ... estimation model N T
FROM R,S,T T S
WHERE ... R

plan space
enumeration

—_—

Figure 1: Traditional query optimizer architecture

“Using experiments that measure the impact of the cost model,
we find that it has much less influence on query performance
than the cardinality estimates.”

“How Good Are Query Optimizers, Really?”
http://www.vldb.org/pvldb/vol9/p204-leis.pdf

Join Order Benchmark

o Aset of 100 queries on a publicly available database from IMDB

o Benchmarks like TPCC don’t contain real “production”-like data, so
benchmarking join orders on those benchmarks doesn’t make
sense

e Used in basically every recent research paper | read on query
optimization improvements

“How Good Are Query Optimizers, Really?”
http://www.vldb.org/pvldb/vol9/p204-leis.pdf

Plan Space Enumeration

Which type of join/scan to use?

e Consider all types of joins/scan at each node to the plan space.
e Chose the one with the lowest cost according to cost model.

What order to join tables in?

Number of possible join orders grows exponentially w/ number of joins
Use dynamic programming and heuristics to search the space
(Postgres12+) Use genetic programming to search the space

Both algorithms also rely heavily on cost model

Plan Space Enumeration - Join Order

For 3 relations there are 12 valid join orders:

J2 J2 J2 J2
/ / \ / / \ / \ / \
J1 J1 J1i J1
/ \ /. \ / \ , L N / \ /N)
a C a C b C b C a C a b C b a
1| a1 J1 J1 Ji J1
/ AN / N\ N AN / N N
32 J2 J2 J2 J2 J2
[\ / \ /\ / \ [/ \ [\
a b C a C b b a C b C a C a b C b a

https://www.querifylabs.com/blog/introduction-to-the-join-ordering-problem

Plan Space Enumeration - Dynamic Program

Use memorization and dynamic programming to chose the join order for a given set of tables.
There are dozens of algorithms to pick from.
The one below is an ultra-simplification.

costs = {}
for s in [1, num tables]:
for each subset of tables S of size s:
splits = all tuples of (table T, [set of s-1 tables S’])
costs[S] = min splits(costs[S’] + cost model (T join S’))

return costs[all tables]

Cost Model

Cost is an abstract concept. The cost model assigns a cost to each
operator in the physical query plan, and typically the cost is multiplied
by the size of the set that the operator is working on.

Cardinality estimation improvements typically dwarf any cost model
tuning that can be done.

Cardinality Estimation

To estimate the size of the result set at any given node, Postgres
maintains a number of statistics about the tables in a database:

Number of records
Number of physical pages
Map of index => number of keys in the index

Histogram on each column of a table
o e.g. number of rows with city = ‘seattle’

Computed periodically (tunable) and usually uses sampling (tunable)

Cardinality Estimator Errors

Estimator assumptions

 uniformity: all values, except for the most-frequent ones,
are assumed to have the same number of tuples

* independence: predicates on attributes (in the same
table or from joined tables) are independent

e principle of inclusion: the domains of the join keys
overlap such that the keys from the smaller domain have
matches in the larger domain

When these invariants don’t hold — cardinality estimator
has large errors

“How Good Are Query Optimizers, Really?”
http://www.vldb.org/pvldb/vol9/p204-leis.pdf

—_
o
H

-
(]
N

« underestimation [log scale] overestimation —
@
N

1e6 -

1e8

PostgreSQL

—_
1

lllllll

Cardinality Estimation Error Example

SELECT * FROM ... JOIN ...
WHERE city = ‘Seattle’
AND state = ‘Washington’

The city and state conditions are not independent. All records where
city = Seattle will also have state = Washington.

The cardinality estimator does not know this, and severely
underestimates the size of the result set.

Cardinality Estimation Error Example

SELECT sname ject()
FROM Supplier s, Shipment Sh projectisname
WHERE s.sid = sh.sid
AND sh.pid = 2 ‘
AND s.city = 'Seattle'
AND s.state = 'WA' join(s.sid=sh.sid)
select(pid=2) select(s.city = Seattle & s.state = WA)
f f
Shipment Supplier
NumRows = 10k NumRows = 1k
Selectivity(pid) = 2500 Selectivity(city) = 20

Selectivity(state) = 10

Improving Cardinality Estimation w/ ML

*Input: query plan
e Qutput: cardinality estimate
* Training data: query execution statistics

Improving Cardinality Estimation w/ ML

* Map query plan nodes into feature vectors
* Each predicate on a node is a feature
name
* Conflate: “age >25” => “age > CONST”
* DB histogram selectivity is feature value
* Use these features to train an ML model that
can predict plan cardinality

“Adaptive Cardinality Estimation”
https://arxiv.org/pdf/1711.08330.pdf

users friends

id INT ageINT first_id INT second_id INT Feature space hash Feature vector
993059063 (0.0001, 0.78, 0.97)

messages
sender_id INT receiver_id INT

Hash Sort clguses
SELECT * FROM users, messages, friends lj : ‘

WHERE users.age > 25 AND users.id > 1000

Clauses | Marginal selectivities
eclass_2 0.0001
users.age > CONST 0.78
eclass_1 > CONST 0.97

AND users.id = messages.sender_id
AND users.id = friends.first_id
AND messages.receiver_id = friends.second_id;

NestedLoopJoin
ers id-= friends first_i eclass_1
5 8 users.id

messages.sender_id

messages.reeeive

HashJoin friends.first_id
users-g= - er_id
eclass_2
friends messages.receiver_id
SeqScan SegScan friends.second_id

users:i > 1000

Base relations
users
messages
friends

‘ users ‘ ‘ messages ’

Figure 1: Building machine learning feature space

Adaptive Query Optimization
* Authors of the Adaptive Cardinality Estimation paper implemented their technique in a project
called Adaptive Query Optimization or AQO

* Implemented using a patch to postgres codebase + extension

* | trained an AQO model on the Join Order Benchmark and benchmarked result
* AWS i3.xlarge: 30gb RAM + 4 vCPUs + NVMe SSD, shared_buffers = 8192mb

JOB Speedup Per Query JOB Speedup Per Query

mm speedup multiplier

B speedup multiplier
2.5
100 A

2.0 1
80 -
1.5

60 -

Speedup
Speedup

1.0 4

40
0.5 A
20 0.0
0 [T | SRR, |1 WL SO [S —0.5 1
(') 2'0 4'0 6‘0 8’0 1(')0 0 20 40 60 80 100
Query Number

Query Number

“Adaptive Cardinality Estimation”
https://arxiv.org/pdf/1711.08330.pdf

[MIN(chn.name) AS character_name,
MIN(mi_idx.info) AS
MIN(t.title) AS complete_hero_movie

rating,

FROM complete cast AS cc,
comp_cast_type AS cctl,
comp_cast_type AS cct2,
char _name AS chn,

cast_info AS

info_type AS

keyword A

kind_type !/

movie_ info_idx AS mi_idx,

movie keyword AS mk,

name AS n,

title AS t

, cctl.kind =

) cct2.kind LIKE

NOT

'cast'
'%complete?'

chn.name 1 NULL

(chn.name LIKE 'Zman%'
OR chn.name LIKE 'Z%Man%')

it2.info

'rating'

) k.keyword IN ('superhero', 'marvel-comics', 'based-on-comic'
) 3 3

'violence', 'magnet', 'web', 'claw', 'laser')

D kt.kind = 'movie'

D t.id = mk.movie_id AND t.id = ci.movie id AND t.id = cc.movie_id AN
NI

mi_idx.movie_id AND ci.movie_id = cc.movie_id AND ci.

s

D mk.movie id = ci.movie id AND mk.movie_id = cc.movie_ id AND it2.id

) mk.movie_id

cc.movie id = mi_idx.movie_id AND chn.id = ci.person_role_id AND n.

k.id = mk.keyword id AND cctl

'tv-special',

"fight',

AND t.production_year > 2000 AND kt.id = t.kind_ id

D

Eid
mi_idx.info_type id

mi_idx.movie_ id

movie id = mi_idx.movie_id

id = ci.person_id

.id = cc.subject_id AND cct2.id = cc.status_id;

Stock Query Plan
Ty e

7.070 11.0 = Aggregate (cost=10,733.32..10,733.33 rows=1 width=96) (actual time=14,208.113..14,208.153 rows=1 loops=1)

2. 1,505.320 5,400 1 = Nested Loop (cost=7.68..10,733.31 rows=1 width=38) (actual time=9.362..14,201.083 rows=5,400 loops=1)

3. 1,481.580 1,145,482 1 = Nested Loop (cost=7.26..10,725.18 rows=18 width=42) (actual time=7.620..9,259.317 rows=1,145,482 loops=1)

4. 691628 6,858.137 10,450 1 = Nested Loop (cost=6.83..10,707.40 rows=10 width=54) (actual time=7.608..6,858.137 rows=10,450 loops=1)

5. 980.390 5,394.677 385,916 1 =* Nested Loop (cost=6.40..10,595.71 rows=244 width=42) (actual time=0.255..5,394.677 rows=385,916 loops=1)

6. 514.435 2,870.623 385,916 1 = Nested Loop (cost=5.97..10,484.61 rows=244 width=46) (actual time=0.242..2,870.623 rows=385,916 loops=1)

B e (T i — seanay

27. 3,436.446 3,436.446 10.0 [Vl 1,145,482 =* Index Scan using keyword_pkey on keyword k (cost=0.42..0.45 rows=1 width=4) (actual time=0.003..0.003 rows=0 loops=1,145,482)
Index Cond: (id = mk.keyword_id)
Filter: (keyword = ANY (‘{superhero,marvel-comics,based-on-comic,tv-special,fight,violence,magnet,web,claw,laser}'::text[]))

1,145,482

Rows Removed by Filter: 1

https://explain.depesz.com/s/IBce

AQO Query Plan

I T e e

h Ryl 1,042.093 11.0 1 = Aggregate (cost=7,156.54..7,156.55 rows=1 width=96) (actual time=996.807..1,042.093 rows=1 loops=1)

24 PRIz 1,036.120 | | 5,400.0 5,400 1 =* Nested Loop (cost=1,010.87..7,156.53 rows=1 width=39) (actual time=5.716..1,036.120 rows=5,400 loops=1)
3. 1 = Nested Loop (cost=1,010.72..7,156.35 rows=1 width=43) (actual time=5.697..982.424 rows=16,596 loops=1)
Join Filter: (t.id = mi_idx.movie_id)
4. 11.910 5,406 1 =* Nested Loop (cost=1,010.30..7,155.83 rows=1 width=49) (actual time=5.683..923.600 rows=5,406 loops=1)
5. 225.960 884.660 I} 5 406.0 5,406 1 =* Gather (cost=1,009.87..7,155.38 rows=1 width=53) (actual time=5.668..884.660 rows=5,406 loops=1)
Workers Planned: 2
Workers Launched: 2
6. 70.706 658.700 ‘ 11,802.0 5,406 3 = Nested Loop (cost=9.87..6,155.28 rows=1 width=53) (actual time=8.358..658.700 rows=1,802 loops=3)
/3
14. 11.405 11.405 11.3 3 = Parallel Seq Scan on keyword k (cost=0.03..1,787.59 rows=4 width=4) (actual time=0.216..11.405 rows=3 loops=3)
134 16(; /3 Filter: (keyword = ANY ('{superhero,marvel-comics,based-on-comic,tv-special,fight,violence,magnet,web,claw,laser}' ::text[]))
' Rows Removed by Filter: 44,720
15. 24.390 25.937 179 7,227 10 =* Bitmap Heap Scan on movie_keyword mk (cost=6.80..1,068.84 rows=305 width=8)
/3 (actual time=0.799..7.781 rows=2,409 loops=10)
Recheck Cond: (keyword_id = k.id)
Heap Blocks: exact=6,466
16. 1.547 1.547 179 7,227 10 =* Bitmap Index Scan on keyword_id_movie_keyword (cost=0.00..6.72 rows=305 width=0)
/3 (actual time=0.464..0.464 rows=2,409 loops=10)
Index Cond: (keyword_id = k.id)

https://explain.depesz.com/s/zhG

BAO - Bandit Optimizer

Another research project that uses a different machine learning setting
and technique to improve cardinality estimates.

Multi-Armed Bandits

The Multi-armed Bandit Problem — Problem Statement

You have: You want:
A bag of quarters Maximal Money
A row of slot machines You don’t know:
Which slot machine is best

How do you balance exploration and exploitation in a way that maximizes

Figure 1: Slot Machines!

“Application of Thompson Sampling to Multi-armed Bandits in Machine Learning” - Daniel Brice
https://mercurytechnologies.slack.com/archives/CPE2X5DMJ/p1614290691118300

Multi-Armed Bandits for Query Optimization

You Have
® A query to execute
® A set of possible query plans

You want
® Fastest execution time

You don’t know
e Which query plan is the best

You Have
® A queryto execute
® A set of possible optimizer hints

You want
® [Fastest execution time

You don’t know
® Which hints result in the best
query plan

Contextual Multi-Armed Bandits

Just like a multi-armed bandit problem, but at every decision step you also have a feature
vector representing the “context” of the environment you are in.

For example: (game=wheel_of_fortune, max_bet=52, color=blue)

Definition 2.1 (Contextual bandit problem) In a contextual bandits problem, there is a distribu-
tion P over (z,r1,...,7r), where z is context, a € {1,...,k} is one of the k arms to be pulled,
and r, € [0,1] is the reward for arm a. The problem is a repeated game: on each round, a sample
(z,71,...,7k) is drawn from P, the context x is announced, and then for precisely one arm a chosen
by the player, its reward r, is revealed.

Definition 2.2 (Contextual bandit algorithm) A contextual bandits algorithm B determines an
arm a € {1,...,k} to pull at each time step t, based on the previous observation sequence
(z1,81,70,1),- - -, (Tt—1,Qt—1,7a,t—1), and the current context x;.

“The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits”
https://proceedings.neurips.cc/paper/2007/file/4b04a686b0ad13dce35fa99fad161c65-Paper.pdf

Bandit Optimizer (BAO)

» Different strategy for learning an optimizer,
which doesn’t learn/predict cardinality
estimates directly

* Bao learns which hints to provide to existing
optimizer

* e.g.SET enable_nestloop TO off;
* This should have a similar effect to
accurate cardinality estimation

“Bao: Making Learned Query Optimization Practical”
https://dl.acm.org/doi/pdf/10.1145/3448016.3452838

imdb=# EXPLAIN SELECT * FROM

QUERY PLAN

Bao prediction: 61722.655 ms
Bao recommended hint: SET enable_nestloop TO off;
(estimated 43124.023ms improvement)
Finalize Aggregate (cost=698026.88..698026.89 rows=1 width=64)
-> Gather (cost=698026.66..698026.87 rows=2 width=64)

Figure 6: Example output from Bao’s advisor mode.

Bandit Optimizer (BAO)

* Map user-given query into set of query plans
* One query plan for each set of optimizer
hints
* Create one-hot vector for each tree node;
append estimated cardinality and cost
* Use these features to train an ML model that ,
predicts query execution time o e . ' (vecw‘“

o %%
" g
gcarq e My

C‘Os,

=3
=)
=

“Bao: Making Learned Query Optimization Practical”
https://dl.acm.org/doi/pdf/10.1145/3448016.3452838

Questions?

