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SQL Nested Loop Semantics

SELECT DISTINCT column1, column2, column3
FROM table1 AS t1, table2 AS t2, table3 AS t3
WHERE <conditions>

result = set()
for x in t1
  for y in t2
    for z in t3
      if conditions(x,y,z)
        result.add((column1, column2, column3))

return result

Semantics - not implementation



Suppliers and Parts Database

https://en.wikipedia.org/wiki/Suppliers_and_Parts_database



Query Planning Overview

1. Parse SQL into a relational algebra tree or logical plan
a. Check that all relations and columns are known

2. Apply logical optimizations to plan
a. Based on heuristics like “push selections down” or “pull projections up”

3. Convert logical plan to physical plan
a. Allows tuning and knowledge of execution environment
b. Where a majority of bad optimizations occur



1. Query Plan

SELECT DISTINCT sh1.pid
FROM Supplier s1, Supplier s2, Shipment sh1, Shipment sh2
WHERE s1.city = 'Seattle'
AND s1.pid = sh1.pid
AND s2.city = 'San Francisco'
AND s2.pid = s2.pid
AND sh1.pid = sh2.pid

distinct

project(sh1.pid)

join(sh1.pid = sh2.pid)

select(s1.city = ‘Seattle’) select(s2.city = ‘San Francisco’)

join(s1.pid = sh1.pid) join(s2.pid = sh2.pid)

Supplier s2 Shipment sh2Supplier s1 Shipment sh1

Convert SQL into a relational algebra



2. Optimize w/ Heuristics

SELECT DISTINCT sh1.pid
FROM Supplier s1, Supplier s2, Shipment sh1, Shipment sh2
WHERE s1.city = 'Seattle'
AND s1.pid = sh1.pid
AND s2.city = 'San Francisco'
AND s2.pid = s2.pid
AND sh1.pid = sh2.pid

distinct

project(sh1.pid)

join(sh1.pid = sh2.pid)

select(s1.city = ‘Seattle’) select(s2.city = ‘San Francisco’)

join(s1.pid = sh1.pid) join(s2.pid = sh2.pid)

Supplier s2 Shipment sh2Supplier s1 Shipment sh1

Push selections down



2. Optimize w/ Heuristics

SELECT DISTINCT sh1.pid
FROM Supplier s1, Supplier s2, Shipment sh1, Shipment sh2
WHERE s1.city = 'Seattle'
AND s1.pid = sh1.pid
AND s2.city = 'San Francisco'
AND s2.pid = s2.pid
AND sh1.pid = sh2.pid

distinct

project(sh1.pid)

join(sh1.pid = sh2.pid)

select(s1.city = ‘Seattle’)

join(s1.pid = sh1.pid)

Supplier s1 Shipment sh1

Push selections down

select(s2.city = ‘Seattle’)

join(s2.pid = sh2.pid)

Supplier s2 Shipment sh2



3. Physical Query Plan

Similar to logical plan but specifies exactly what types of scans and joins to use 
(e.g. index scan on idx1, hash join on join1, nested loop join on join2)

Major challenges

● Which type of join/scan to use?
● What order to join tables in?

“Queries in PostgreSQL” 
https://habr.com/en/company/postgrespro/blog/649499/



3. Physical Query Plan

Which type of join to use?

● e.g. based on disk access speeds, and number of rows we’ll need to join, we 
should use a nested loop join at a certain node

What order to join tables in?

● Is the query faster if I join supplier on supply first, or supply on shipment first?



Query Planner Options

Postgres allow configuration options to set the cost model for disk/memory 
speeds, as well as allow thresholds for when it should use a specific type of 
join/scan.

Postgres also provides per-query “planner hints” as configuration parameters

e.g. “SET enable_hashjoin = ‘off’; SELECT * from ….”

https://www.postgresql.org/docs/current/runtime-config-query.html



3. Physical Query Plan

The rest of this presentation is set in stage 3 - creating the physical query plan. 

We assume that steps 1 and 2 (parsing SQL and logical optimizations) are 
relatively straightforward and there is a deterministic “correct answer” that is easy 
for the optimizer to compute every time.



Typical Query Optimizer

“How Good Are Query Optimizers, Really?” 
http://www.vldb.org/pvldb/vol9/p204-leis.pdf

“Using experiments that measure the impact of the cost model, 
we find that it has much less influence on query performance 
than the cardinality estimates.”



Join Order Benchmark

● A set of 100 queries on a publicly available database from IMDB
● Benchmarks like TPCC don’t contain real “production”-like data, so 

benchmarking join orders on those benchmarks doesn’t make 
sense

● Used in basically every recent research paper I read on query 
optimization improvements

“How Good Are Query Optimizers, Really?” 
http://www.vldb.org/pvldb/vol9/p204-leis.pdf



Plan Space Enumeration

Which type of join/scan to use?

● Consider all types of joins/scan at each node to the plan space.
● Chose the one with the lowest cost according to cost model.

What order to join tables in?

● Number of possible join orders grows exponentially w/ number of joins
● Use dynamic programming and heuristics to search the space
● (Postgres12+) Use genetic programming to search the space
● Both algorithms also rely heavily on cost model



Plan Space Enumeration - Join Order
For 3 relations there are 12 valid join orders:

https://www.querifylabs.com/blog/introduction-to-the-join-ordering-problem



Plan Space Enumeration - Dynamic Program

costs = {}
for s in [1, num_tables]:

for each subset of tables S of size s:
splits = all tuples of (table T, [set of s-1 tables S’])
costs[S] = min_splits(costs[S’] + cost_model(T join S’))

return costs[all_tables]

Use memorization and dynamic programming to chose the join order for a given set of tables.
There are dozens of algorithms to pick from. 
The one below is an ultra-simplification.



Cost Model

Cost is an abstract concept. The cost model assigns a cost to each 
operator in the physical query plan, and typically the cost is multiplied 
by the size of the set that the operator is working on.

Cardinality estimation improvements typically dwarf any cost model 
tuning that can be done.



Cardinality Estimation

To estimate the size of the result set at any given node, Postgres 
maintains a number of statistics about the tables in a database:

● Number of records
● Number of physical pages
● Map of index => number of keys in the index
● Histogram on each column of a table

○ e.g.  number of rows with city = ‘seattle’

Computed periodically (tunable) and usually uses sampling (tunable)



Cardinality Estimator Errors

Estimator assumptions

• uniformity: all values, except for the most-frequent ones, 
are assumed to have the same number of tuples 

• independence: predicates on attributes (in the same 
table or from joined tables) are independent 

• principle of inclusion: the domains of the join keys 
overlap such that the keys from the smaller domain have 
matches in the larger domain

When these invariants don’t hold – cardinality estimator 
has large errors

“How Good Are Query Optimizers, Really?” 
http://www.vldb.org/pvldb/vol9/p204-leis.pdf



Cardinality Estimation Error Example

SELECT * FROM … JOIN … 

WHERE city = ‘Seattle’

AND state = ‘Washington’

The city and state conditions are not independent. All records where 
city = Seattle will also have state = Washington.

The cardinality estimator does not know this, and severely 
underestimates the size of the result set.



Cardinality Estimation Error Example

SELECT sname
FROM Supplier s, Shipment Sh
WHERE s.sid = sh.sid
AND sh.pid = 2
AND s.city = 'Seattle'
AND s.state = 'WA'

project(sname)

join(s.sid=sh.sid)

select(pid=2) select(s.city = Seattle & s.state = WA)

Shipment
NumRows = 10k
Selectivity(pid) = 2500

Supplier
NumRows = 1k
Selectivity(city) = 20
Selectivity(state) = 10

Estimate = 5



Improving Cardinality Estimation w/ ML

• Input: query plan

• Output: cardinality estimate

• Training data: query execution statistics



Improving Cardinality Estimation w/ ML

• Map query plan nodes into feature vectors
• Each predicate on a node is a feature 

name
• Conflate: “age > 25”     =>    “age > CONST”
• DB histogram selectivity is feature value 

• Use these features to train an ML model that 
can predict plan cardinality

“Adaptive Cardinality Estimation” 
https://arxiv.org/pdf/1711.08330.pdf



Adaptive Query Optimization

“Adaptive Cardinality Estimation” 
https://arxiv.org/pdf/1711.08330.pdf

• Authors of the Adaptive Cardinality Estimation paper implemented their technique in a project 
called Adaptive Query Optimization or AQO

• Implemented using a patch to postgres codebase + extension

• I trained an AQO model on the Join Order Benchmark and benchmarked result

• AWS i3.xlarge: 30gb RAM + 4 vCPUs + NVMe SSD, shared_buffers = 8192mb



Query 26c



Stock Query Plan

https://explain.depesz.com/s/IBce



AQO Query Plan

https://explain.depesz.com/s/zhG



BAO - Bandit Optimizer

Another research project that uses a different machine learning setting 
and technique to improve cardinality estimates.



Multi-Armed Bandits

“Application of Thompson Sampling to Multi-armed Bandits in Machine Learning” - Daniel Brice 
https://mercurytechnologies.slack.com/archives/CPE2X5DMJ/p1614290691118300



Multi-Armed Bandits for Query Optimization

You Have
● A query to execute
● A set of possible query plans

You want
● Fastest execution time

You don’t know
● Which query plan is the best

You Have
● A query to execute
● A set of possible optimizer hints

You want
● Fastest execution time

You don’t know
● Which hints result in the best 

query plan



Contextual Multi-Armed Bandits

Just like a multi-armed bandit problem, but at every decision step you also have a feature 
vector representing the “context” of the environment you are in. 

For example: (game=wheel_of_fortune, max_bet=$2, color=blue) 

“The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits” 
https://proceedings.neurips.cc/paper/2007/file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf



Bandit Optimizer (BAO)

• Different strategy for learning an optimizer, 
which doesn’t learn/predict cardinality 
estimates directly

• Bao learns which hints to provide to existing 
optimizer

• e.g. SET enable_nestloop TO off;
• This should have a similar effect to 

accurate cardinality estimation

“Bao: Making Learned Query Optimization Practical” 
https://dl.acm.org/doi/pdf/10.1145/3448016.3452838



Bandit Optimizer (BAO)

• Map user-given query into set of query plans
• One query plan for each set of optimizer 

hints
• Create one-hot vector for each tree node; 

append estimated cardinality and cost
• Use these features to train an ML model that 

predicts query execution time

“Bao: Making Learned Query Optimization Practical” 
https://dl.acm.org/doi/pdf/10.1145/3448016.3452838



Questions?


