
CLASSY: A SINGULAR VALUE DECOMPOSITION BASED RECOMMENDATION

ENGINE

LEV DUBINETS & TYLER YEATS

 Academic advisors can recommend classes to students based on the student’s past

classes and how much they enjoyed said classes. In this paper, however, we propose to

supplement such advisors with a system that automates the process using a common linear

algebra technique called Singular Value Decomposition (SVD). The system we designed,

named Classy, is able to, given a student, find other students who rated their classes

similarly and recommend these other students’ classes to the first student.

The advantage of this system over a more naïve direct matching approach is that it

is much more comprehensive. Instead of just looking for students who have taken the same

class, Classy actually knows what it means for classes to be similar to one another. Similar

classes can be found by determining which groups of classes are commonly taken together,

and this structure appears later in the decomposed matrices.

 To compute recommendations, we first collect our information in a vector space

where each dimension represents a class and each student is a vector in this space. A

student’s coordinate with respect to a given axis is his rating of the class that the axis

represents. For example, if our space is based on classes 𝑐1, 𝑐2, … , 𝑐𝑛 and a student gave

them ratings 𝑟1, 𝑟2, … , 𝑟𝑛, respectively, then this student’s coordinates in this n-dimensional

vector space are [𝑟1, 𝑟2, … , 𝑟𝑛] . In our system we let students rate classes on a scale of 1-10

and a student’s coordinate with respect to a class he has not taken is 0. To accentuate

differences in ratings, the entry in the student-class matrix is the student's rating of a

particular class minus 5.5. So, a rating of 10 corresponds to 4.5 in the matrix, and a rating

of 1 to -4.5. Roughly, this means that favorable ratings become positive matrix entries, and

unfavorable ratings become negative ones.

 In such a vector space, two students who have taken similar classes and rated them

similarly will be represented by vectors that have a relatively small angle between them. A

measure of the similarity can be calculated by taking the cosine of the angle between the

vectors in the desired vector space. This makes it easy to quantify the goal of our system:

given a student, we find other students whose vectors have a small angle with respect to

the original student’s, and recommend classes based on these newfound students. However,

as we add more students and classes to our space, the dimensionality of our vector space

grows and computing recommendations becomes infeasible. We use the SVD to reduce the

dimensionality of our system.

 To give a more intuitive understanding of how the SVD functions, we will start with

some background. Consider the matrix

𝐴 = (
80 0
 0 75

0
0

0 0 5
)

 As this matrix is diagonal, its eigenvalues are 𝜆1 = 80, 𝜆2 = 75, and 𝜆3 = 5, and its

eigenvectors are just the standard basis in 𝑅3. Any arbitrary vector in 𝑅3 can be expressed

as a linear combination of the eigenvectors, then, such as

𝑣 = (
5
7
3

) = 5𝑖 + 7𝑗 + 3𝑘

 When we multiply by 𝐴, we get

𝐴𝑣 = 𝐴(5𝑖 + 7𝑗 + 3𝑘)

 = 5𝐴 × 𝑖 + 7𝐴 × 𝑗 + 3𝐴 × 𝑘

 = 5(𝜆1 × 𝑖) + 7(𝜆2 × 𝑗) + 3(𝜆3 × 𝑘)

 = 400𝑖 + 525𝑗 + 15𝑘

 It is clear that the smallest eigenvalue of A does not have much of an effect on the

final vector compared to the two larger eigenvalues (Manning). In the case of larger

matrices, the importance of the eigenvalues decreases with their relative size. This result is

very important for understanding the truncated SVD.

 To apply the SVD, we represent our data as a matrix in which students are rows,

classes are columns, and values represent a student’s rating of a class. For example, if our

system contains 𝑛 students and 𝑚 classes, then the matrix we use to represent it is an

𝑛 ×𝑚 matrix 𝐴 where each student is a row and each class is a column, and therefore

student 𝑠𝑖’s rating of class 𝑐𝑗 is the value of the entry 𝐴𝑗,𝑖. Since not all students take and

rate all classes, the matrix 𝐴 will usually be very sparse.

 If 𝐴 is the student-class matrix, then 𝐴𝐴𝑇 is a measure of similar students.

Specifically, the (𝑖, 𝑗)𝑡ℎ entry of 𝐴𝐴𝑇 is the number of classes that students 𝑖 and 𝑗 have both

taken, weighted by their ratings. If both users rated a class positively, the contribution to

the sum of that class will be high, as it will if both users rated it negatively. If users rate

classes differently, however, the entry will be more negative. The fact that similar ratings,

whether good or bad, correspond to high similarities between users was one reason for the

scaling of ratings from -4.5 to 4.5 instead of 1 to 10. Otherwise, if two users rated a class

poorly, they would clearly be similar, but this would not be reflected in the matrix 𝐴𝐴𝑇.

Similarly, the matrix 𝐴𝑇𝐴 maps the similarities between classes. The (𝑖, 𝑗)𝑡ℎ entry in

this matrix corresponds to the number of students that have taken classes 𝑖 and 𝑗, weighted

by how they rated the class.

The SVD of matrix can then be computed as follows: set the columns of 𝑈 equal to

the eigenvectors of 𝐴𝐴𝑇 and the columns of 𝑉 to the eigenvectors of 𝐴𝑇𝐴. Note that since

both 𝐴𝐴𝑇and 𝐴𝑇𝐴 are symmetric, the eigenvectors are orthogonal. The SVD is then

𝐴 = 𝑈Σ𝑉𝑇

where the values 𝜆1…𝜆𝑛are the eigenvalues of both 𝐴𝐴𝑇and 𝐴𝑇𝐴 and Σ𝑖𝑖 = √𝜆𝑖

 Given a matrix 𝐴 = 𝑈Σ𝑉𝑇, let 𝐴𝑘 = ∑ 𝑢𝑖𝜎𝑖𝑣𝑖
𝑇𝑘

𝑖=1 , also known as the truncated SVD. As

shown in Data-Driven Modeling, this is the best rank-𝑘 approximation of 𝐴, meaning that it

minimizes the Frobenius norm ‖𝐴 − 𝐴𝑘‖𝐹 , defined as the square root of the sum of the

squares of the elements of 𝐴. The intuition behind this ties back to the fact that the

truncated SVD can be represented as a sum of matrices scaled by the square roots of their

eigenvalues, and the smaller eigenvalues will be smaller scaling factors and are therefore

less important.

Essentially, computing the SVD and recombining it using 𝑘 singular values allows

us to reduce the dimension of our space to 𝑘 while preserving as best as possible the

original values in 𝐴. This result is also known as the Eckart-Young Theorem (Manning).

Such a decomposition isolates the important parts of 𝐴 and allows us to approximate our

original space with a lower dimensional vector space.

Representing classes and users in a vector space allows for comparison between

entities by cosine similarity. However, the main problem is that similar students that

haven’t taken overlapping classes would not be recognized by the system. Reducing the

dimensionality by using the truncated SVD emphasizes the structure of the clusters in the

larger vector space, bringing similar students closer together, even if they have not taken

the same classes (Manning).

Note that choosing the value of 𝑘 is non-trivial. Usually there is a sharp drop in the

magnitude of the singular values, and that indicates what 𝑘 should be. After we choose our

𝑘, we refer to 𝐴𝑘 as 𝐴′.

FIGURE 1. SVD Decomposition (Martínez)

 After the initial decomposition on our sparse matrix 𝐴 is performed, we can use the

resulting matrices 𝑈 and 𝑉 to determine coordinates of both students and classes. Since the

reduced SVD gives us a 𝑘-dimensional space, we can represent each class a vector with 𝑘

components. This vector, representing a class 𝑐, can be determined by taking the sum of the

products of the 𝑖th column of 𝑈 with the 𝑖th singular value, for 𝑖 from 0 to 𝑘. Similarly, the

vector representing a student 𝑠 in this reduced space is the sum of the products of the 𝑗th

column of 𝑉 with the 𝑗th singular value, for 𝑗 from 0 to 𝑘. So, to compute recommendations

for a given student we simply find classes whose angles are small with respect to the

student’s. Note that it is the angle which is important, not necessarily the proximity of the

points.

 As an example of this technique, consider the following dataset, where the classes

𝐶1…𝐶9 correspond to MATH134, MATH135, MATH136, PHYS121, PHYS122, PHYS123,

PHYS124, AMATH301, ENGL111, respectively:

𝑇𝑦𝑙𝑒𝑟
𝐿𝑒𝑣
𝑁𝑖𝑐𝑘
𝐽𝑎𝑛𝑒
𝐽𝑜𝑒
𝐿𝑢𝑐𝑦 (

9 8 9
9 8 9
9 8 8

1 2 3
2 2 2
2 1 3

2 0 0
1 7 1
1 8 1

8 9 8
6 7 6
1 2 2

1 3 1
6 7 6
8 8 9

2 9 1
4 8 1
8 3 8)

FIGURE 2. Example dataset of students and classes.

We compute the SVD of this matrix and then reduce it to rank 2. We then plot this

data in 2-dimensions, using the first two columns of 𝑈, scaled by the first two singular

values, as coordinates for classes, and the first two columns of 𝑉, scaled by the first two

singular values, as coordinates for users:

FIGURE 3. Plot of the 2-dimensional approximation of the example system in FIG. 2

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9

 This plot shows the kind of intelligence that the SVD allows us to extract. For

example, we can see that the students Lev, Nick, and Jane have similar tastes, because

they are clustered together. This is expected because they have very similar ratings for all

the classes. Tyler is also fairly close to this cluster, however, as expected, because he has

not taken AMATH301 and ENGL211, he is slightly distanced from Lev, Nick, and Jane.

This is the information that ends up being used for recommendations.

All that is left is to devise formulas to update our dataset with new ratings that we

obtain from students and new classes that are added to the course catalog. This process is

called folding in, and Berry et al. shows how to compute such projections:

For a new student vector: 𝑠′ = 𝑠𝑇𝑈𝑘Σ𝑘
−1 and a new class vector: 𝑐′ = 𝑐𝑉𝑘Σ𝑘

−1

When this occurs, the students and classes already in the data retain their original

locations, so the new data has no effect on the old. However, continually folding in new

students and classes may eventually degrade the accuracy and representation of students

and classes in our space, as the data will not be properly updated to reflect some of the new

connections that are made (Berry et al.). Therefore we must periodically rerun the SVD

based on all of the data we have collected. For a large data set, this would be an expensive

operation and an optimal schedule of re-computing and folding in would have to be decided

upon. For our example, however, the data set is sufficiently small so that we can recalculate

the SVD each time we receive new data.

 To demonstrate the functionality of all these techniques, we have built a web

application that provides an interface for students to add classes to their profile, stores all

of these entries in a database, and gives recommendations back to the students by using the

method described in this paper. The app is available at https://classy.dubinets.io .

 Upon signing up for the service, a user is greeted with a page explaining that he

must add classes to his profile and rate them in order to receive recommendations. Ratings

are assigned from 1-10, with 10 being the highest possible rating.

FIGURE 4. A user adding and rating a few classes he has already taken.

 After adding and rating all or some of the classes he has taken, Classy will

immediately recommend the top six classes. There is another page that lists all of the

recommendations and contains buttons for a user to respond to the recommendations by

indicating whether he would actually enroll in the recommended courses.

https://classy.dubinets.io/

FIGURE 5. Classy’s top six recommendations for this user

FIGURE 6. All of the recommendations are laid out like so, allowing the user to give

feedback.

Works Cited

Berry, Michael W., Susan T. Dumais, and Gavin W. O'Brien. "Using Linear Algebra for

Intelligent Information Retrieval." SIAM Review 37 (1995): 573-95. CiteSeerX. Web.

8 May 2014. <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.9579>.

Kutz, J. Nathan. Data-Driven Modeling & Scientific Computation. Oxford: Oxford

University, 2013. Print.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. Introduction to

Information Retrieval. Cambridge: Cambridge UP, 2008. Print.

Martínez, Jaime. Matrix decomposition to obtain singular values. Engineer Jau.

WordPress, 4 May 2013. Web. 8 May 2014.

<http://jauelingeniero.files.wordpress.com/2013/05/1-s2-0-s0167865505000140-

si1.gif>.

